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Outline

* Human pose tracking: preliminaries and approaches

* RFID-Pose: 3D human pose monitoring using RFID [1], and its
extensions [2,3]

 Generative Al for data augmentation [4-9]
 Generative Al for 3D pose augmentation and completion [10,11]

e Conclusions
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Human Skeleton Detection and Pose Tracking

Human pose tracking: an important
problem of human-computer interaction

Activity recognition

* Full-body sign language interpretation (e.g., hand
signals of traffic police, aircraft ground handling)

* Fall detection

» Security/safety surveillance
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Motion capture and augmented reality

Somatosensory games

Image Source . https ://medium.com/@victoriamazo/3d-human-pose-estimation-ce1259979306

Image Source: https://www.ubisoft.com/en-us/game/just-dance/2021
Image Source: https://www.openpr.com/news/1345254/3d-motion-capture-market-witness-a-consistent-growth-in-the-forecast-years-with-the-

key-vendors-phoenix-technologies-codamotion-solutions-vicon-motion-analysis-corporation-optitrack.htm/
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Traditional Camera based Approaches

e Evolving from (i) 2D to 3D, and (ii) single Security and privacy concerns:

person to multiple people Toronto
Private moments captured on home security

° Performance ||m|ted by poor Ilght/ng, C/UtterEd cameras being live streamed again on website
background, occlusion, or camera angle

f (¥ = (&) in

Authorities have tried to stop the site, but streaming unsecured cameras isn't illegal

6 Angelina King, Jason Lo - CBC News - Posted: Jun 29, 2021 4:00 AM ET | Last Updated: June 29

These images were captured on a website that live streams unsecured security cameras from inside homes
and businesses across Canada. Clockwise, from top left: an elderly woman is fed in her room, which includes a
commode toilet; two women eat lunch in a hair salon; kitchen staff prepare lunch at a restaurant; and a

woman leaves her home to take her dog for a walk. (CBC) 7 \
i
Image Source: https://www.cbc.ca/news/canada/toronto/website-live-streaming-security-cameras-private-1.6083168 ;1
5 Z. Cao, et al. "OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields," IEEE transactions on pattern analysis and machine intelligence 43.1 (2019): 172-186. AUBURN UNIVERSITY
D. Mehta, et al. "Vnect: Real-time 3d human pose estimation with a single RGB camera," ACM Transactions on Graphics (TOG) 36.4 (2017): 1-14. Wireless Engineering Research and

Education Center



RF Sensing-based Human Pose Tracking

Strengths:
* No lighting requirements

e Less intrusive and better preserves the
privacy of users

* Works through walls and obstacles

Main challenges:
* Motion related feature extraction
 Mapping from RF features to human pose

e Continuously tracking the movements of
human limbs: static pose vs. in motion

* |nterference from the environment

FMCW Radar, WiFi, mmWave, etc.

A mapping solution:

*  Multimodal Learning based approaches

Vision-assisted learning

Data Collection Vision-aided Learning

RF Data Collection Labeled Vision Data

Training with Supervision|

Deep Neural Network

RF Data Preprocessing

Skeleton
Generation

Estimated
Human Pose
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Radar-based Approaches

Strengths:

* High accuracy Generate

pose labels

e (Capable of tracking multiple subjects
* Capable of through-wall detection

e More robust to environmental interference RE-hnsed 3D
.- skeleton
than WiFi-based systems

Limitations:

* Implemented with Software-Defined Radio
(SDR) and 16 synchronized T-shaped antenna
arrays [3]

e Complicated system and high cost

* Both antenna placement and synchronization
need careful calibration

Images

09—

Multi-view
geometry

(a) Antenna “T” Setup (b) FMCW Signal Generation
FMCW radar setup and signal generation

[1] M. Zhao, et al., "Through-wall human pose estimation using radio signals,” in Proc. IEEE CVPR 2018, Salt Lake City, UT, June 2018, pp. 7356-7365.

7 [2] M. Zhao, et al., “"RF-based 3D skeletons,” in Proc. ACM SIGCOM 2018, Budapest, Hungary, Aug. 2018, pp. 267-281.
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WiFi-based Techniques

3 Receiver Antennas

Strengths: [[F—
* Less intrusive, and a wide range of [ L Y
detection

e 2D pose estimation for multiple
subjects [1] and 3D pose generation
for a single subject [2] T 7 Fopo LA [ 11

Commodity devices, low-cost hardware *

Limitations:

e Sensitive to interference from the testing
environment (e.g., moving people or
objects, obstacles, etc.)

* Expensive VICON system

DX
[1] F. Wang, et al., “Person-in-WiFi: Fine-grained person perception using WiFi,” in Proc. IEEE ICCV 2019, Seoul, Republic of Korea, Oct. 2019, pp. 5452-5461. 4
8 [2] W. Jiang, et al., “Towards 3D human pose construction using WiFi,” in Proc. ACM MobiCom’20, London, UK, Sept. 2020, pp. 1-14. AUV;“IJ“; ,UN':”?:Y
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RFID: Communication Based Applications

Electronic Product Code (EPC): a universal identifier
providing a unique identity for every physical object An EPCRFID

anywhere in the world (96 to 496 bits) - @il?::adrtbv

* Person identification

* Vehicle parking monitoring

* Fast-lane and E-Zpass road toll system
e Secure entry cards

e Supply chain management

* Food distribution control

Communication = deliver stored data when
being queried

Image Source: https://medicalfuturist.com/rfid-implant-chip/
Image Source: https://www.wikiwand.com/en/Electronic_Product_Code ?
Image Source: https://www.atlasrfidstore.com/marathon-uhf-rfid-shoe-tag/ i

Image Source: https://pilotonline.com/news/local/transportation/article_62a3b00e-64fb-11e8-88d9-5fbb5a27dbe8.html AUBURN UNIVERSITY
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RFID: RF Sensing Based Applications

/

Phase of the received signal:
27d

¢ = mod (T + ar + ar + Qrqg, 27T>

Wireless Channel = RF phase angle, Doppler
frequency, and Peak RSSI

Image Source: https://senion.com/indoor-positioning-for-retail/

Arduino [El
§ oo (¢ | i L
Lam® | Thermometer RFID Reader Computer
Antenna
RFID

RFID based sensing
applications:

* |ndoor localization

* Temperature measurement

* @Gesture recognition

Vital signal monitoring

e Driving fatigue detection

SR

AUBURN UNIVERSITY

10  Image Source: https://www.psychologytoday.com/us/blog/the-fifth-vital-sign/201711/why-cognition-should-be-the-fifth-vital-sign e
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Existing RFID based Pose Tracking Systems

Angle-of-arrival (AoA)-based limb
orientation monitoring [4,5]:

e Utilizing RFID tag arrays

* Angle estimation with the RF hologram technique

leltatIOHSZ a. Shoulder
° Many tagS are needed fOI" monitoring the entire RF-Wear tracks the user’s skeleton using passive RFID tags [4]
body

Wearable
RFID tags Body movement

captured by RF-Kinect

e Generating real-time RF hologram map is
challenging

Observations:

* Using AoA to localize multiple tags in realtime is
very challenging (not ML based)

 Multimodal learning shall be helpful

RF-Kinect: Tracking the body movement based on wearable RFID tags [5]

[4] H. Jin, Z. Yang, S. Kumar, and J. I. Hong, "Towards wearable everyday body-frame tracking using passive RFIDs,” Proc. ACM Interactive, Mobile, Wearable 9' 3
Ubiquitous Technol., vol. 1, no. 4, pp. 1-23, Dec. 2018. :

[5] C. Wang, J. Liu, Y. Chen, L. Xie, H. B. Liu, and S. Lu, "RF-Kinect: A wearable RFID-based approach towards 3D body movement tracking,” Proc. ACM Int., "
Mobile, Wearable Ubiquitous Technol., vol. 2, no. 1, Mar. 2018.
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Outline

e Human pose tracking: preliminaries and approaches

 RFID-Pose: 3D human pose monitoring using RFID [1], and its
extensions [2,3]

 Generative Al for data augmentation [4-9]
 Generative Al for 3D pose augmentation and completion [10,11]

e Conclusions
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RFID-Pose: Vision-aided 3D Human Pose Estimation

Processor
Kinect 2.0

RFID Reader

Polarized Antennas
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Challenges: Noisy and Sparse RFID Data

Collected phase for each channel:

‘? 272L f,
gbszmod( m2Lfs | g0, 271’), s=1,2.....50
ST . C
Channel Hoppin@ S 1
= o &w‘p | Channel hopping phase offset of
£ > channel s
o3 7
%
& ) ©® 0% . .
2t ® o o @ 0 Missing samples in tensor of the RFID data:
®
| < @ o | Raw RFID Phase Tensor
¢ 0 00 S Original Time Slots
onl : lod 0@ LODDON,. O g
nly one tag 1s sample mEaEstaes gl ]| ¢
0 100 200 300 400 500 Y 5 P E'E'E’]E]'El' i]ﬂ g
[T ] Y ]
Sequence Number by an antenni at a time DIDEIDWDI i
Raw phase sampled from one of the RFID tags by Sampled Phase | Empty Slots

a single reader antenna

Extremely high sparsity: with 12 tags and 3 antennas:
35/36 = 97.22% 2
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Skeleton Generation from RFID Data

Most existing systems are based on the confidence The forward kinematic technique:
map, which is not suitable for RFID systems (with a * New location derived from (1) the parent joint
110Hz sampling rate) location, and (i1) the 3D rotation
1x46x8 GT
SM_ ﬂ — w
j Mask R-CNN
JHN‘SZS)<46)<82
Figure 2: RF heatmaps and an RGB image recorded at the same time. 52x46x82 OpenPose Human Skeleton New Pose
To generate a confidence map video at 10 fps, only 11 The 3D rotation of each joint for each frame
phase samples could be used for map generation can be represented with 4 parameters (i.e., as a
unit quaternion) ~
Even if we reduce the map resolution to 100100, r+xd+yp + 2y
transforming the 11 samples to 10,000 pixels in a map Thus only 48 parameters are needed to estimate
1s a severely 1ll-posed problem the 3D positions of the 12 human joints

]
M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao, A. Torralba, and D. Katabi, “Through-wall human pose estimation using radio signals,” in Proc. IEEE CVPR 2018, Salt Lake City, UT, June 2018, pp. Z%%%—R@%WERSITY
15 F. Wang, S. Zhou, S. Panev, J. Han, and D. Huang, “Person-in-WiFi: Fine-grained person perception using WiFi,” in Proc. IEEE ICCV 2019, Seoul, Republic of Korea, Oct. 2019, pp. 5452-5461.
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RFID Phase Distortion Mitigation and Data Imputation

Original Time Slots

Phase Distortion Mitigation || Data Imputation
Passive RFID Sparse Tensor of Calibrated Phase
Tags Deployment RFID Phase Variation Tensor

16

5 fAsasa e s s "
- (Ooooo-oohe ¢ (DOooo-0o
= [0B000-- 08 : ([0DE0E--88
;‘3 EIEIEII]EI---EIEI(@% < [O0000--00V s
S - Calibrated v
Sampled Phase  Empty Slots Time Slots
3 1
Channel Hopping Offset High Accuracy Low Rank
Removal Tensor Completion
3 1
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RFID data preprocessing

Phase Distortion Mitigation:
Tensor construction

Channel hopping offset mitigation
Phase variation unwrapping

Data Imputation:

Downsampling and synchronization
High Accuracy Low Rank Tensor Completion
(HaLRTC)

Phase Variation (rad)
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0.2 F O & 09

0.4 T T T T T T

0.3t Estimated Data
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The missing data are estimated by HaLRTC
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The Deep Kinematic Neural Network Model

Kinect Data

TS—“ | @

Recurrent Recurrent
Decoder Decoder
Ts— 1 s |
Target Skeleton Recurrent Recurrent
Encoder Encoder
T
RFID Data RFID Data

151 @)

Recurrent

Decoder
TS 1

Recurrent

Encoder
T

RFID Data

Time Sequence

17

-

Human Skeleton New Pose

Recurrent Autoencoder (256 gated

recurrent units (GRU) ):
RF data =» unit quaternion

Forward kinematic layer:
Rotation matrix = 3D pose

Kinect data:
* labels, for training and performance
evaluation |
* Not needed after training the model f;
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Implementation and Evaluation

ing Still

Pose tracking experiments

Estimated Pose Ground Truth
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Experiment Results: Pose Tracking

Estimated Pose Ground Truth Estimated Pose Ground Truth

1.2 1.2 1.2 1.2

1. 1. 1.4 1.

0.8 0.8 ) 08, 0.8,
™06 ™06 ™ os) ™06
0.4 0.4 0.4, 0.4,
0.2 0.2 0.2, 0.2
o) 0. o) o)
0.5
0
05

0.5 0.5 0.5 0.5
0.5 0.5 0.5
0 0 0 0
0 0 0
-0.5 -0.5 -0.5 -0.5
® ¥

y : -0.5 y : -0.5 y ‘ -0.5

Pose tracking: squatting Pose tracking: twisting
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Experimental Results: Estimation Error

0.8 1

g
06 [ — \-:
R :
“ ' i s
04+ : I | 5
i I $
L E
02+ I i _ — L i

I H One-Limb Motion

2.831 3.75 1 == Complicated Motion
0 1 v\ +I 1 1 1 1
0 1 2 3 4 5 6 7 8 12

Estimation Error (cm)
Overall pose estimation accuracy
8 T T T T T T T T T

Twisting Squat Waving Kicking Walking Boxing Standing
Estimation errors for different types of motions

TABLE l1lI

E PERFORMANCE EVALUATION UNDER DIFFERENT ENVIRONMENTS
S
ué Testing Environments Lstimation Error
£ Computer Lab-1 3.83cm
& Computer Lab-2 3.90cm

Corridor 4.03cm

Living Room 3.75¢m

.9. R
1t 2 3 4 5 6 7 8 9 10 11 12

1
w

. i
20 Joint Index

AUBURN UNIVERSITY

Estimation errors for different joints e o o
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Diversity in Different Data Domains

x
o e TABLE IV
The Same aCt1V1ty COUld generate VEery % é%‘ PERFORMANCE EVALUATION FOR DIFFERENT STANDING POSITIONS
dlfferent RF data When sampled ln JZQ ] E{. [ Position Index Estimation Error
different environments L gty Position | (Trained) 4530m
: : Segamecs Position 2 (Trained) 3.82cm
= ¢ e : i Position 3 (Trained) 4.75cm
. . . | R ﬁ : Position 4 (Untrained) 8.38cm
Developing a human pose estimation Position 5 (Unirained) 571em
. . Position 6 (Untrained) 9.14cm
techniques that are generalizable to v

.
| > .4m Ll Z.5m L |

different environments =» a great

) Different deployment environments and standing positions
challenge for RF sensing

Data Domain 1 Data Domain 2
Y I
. 2
Polarized
_1_ Antenna 3T
L bt 4
t ) =R
-\_4_‘ —_—
! 20
. =
: vl 7
4 L gl
LI I |
P2 11 9
10

0 5 10 15 20 25 30 O 5 10 15 20 25 30 ;
Sequence Number DX
RFID Phase collected in two different environments for the same activity AUBURN e RsITy
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Meta-Pose Can Be Helpful

Network Initialiration New Domain The deep learning model is pretrained
— : Fine-tuning with data from four known data domains
Pre-Training Data Domains Target Data Domain
Domain fusion algorithm: to produce more
' T ' . data domains
Domain Fusion Small Datasets
| with Few Samples L. .
T The training variables are updated
. . .
Cdr) (ds) -+ (dn) Few Shots recursively by the Reptile and model-
Fine-funing agnostic meta-learning (MAML) meta-
Meta-Pose ! learning algorithm
Initialization Algorithm
When transferring to a new data domain,

o we only need to collect a few examples
Training framework of Meta-Pose to fine-tune the generalized network

DX
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Implementation and Evaluation

Corridor Lab l;|

= | BEE g
D8 : : 1
| . ' D5 | Dy | De!
= <1 =|p .
® E: ! 7 1
K W,
: (2.18m |
-__1.°§.H.‘___i
UHFRFIDT
2.4m 4.5m > ags
Data domains used in the experiments Hardware configuration of Meta-Pose

24

Seven data domains are
sampled in the computer lab,
and the 8th domain 1s sampled
in an empty corridor

* DI to D4 are used for
pretraining

* D5 to D8 are considered as
new data domains for
validation

Five subjects participate in the
experiments

‘
)
i
1
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Mean Estimation Error (cm)

Mean Estimation Error (cm)

Experimental Results and Analysis

| | I Pretrained Network
[N Fine-tuned Network

~]

=)
T

Dl D2 D3 D4 D5 D6 D7 D8

Overall performance in terms of mean estimation
error in the eight different data domains
7

[«
T

W
T

~
T

|95}
T

[SS]
T

—
T

Lo

D5 D6 D7 D8

0

Fine-tuning performance of different new data
domains with different shots of new data

Mean Estimation Error (cm)

~
T

(@)}
T

i
T

~
T

|98}
T

S
T

L1l L1l L1

Walking Twisting Standing Still ~ Arm Waving

0

Fine-tuning performance of different activities with
different shots of new data in new data domain D5

Average error comparison with the baseline
method RFID-Pose

Domain Index  RFID-Pose  Meta-Pose
Dy 6.72cm 3.72cm
Dg 7.62cm 4.32cm
D~ 5.46cm 3.5lcm
Dg 4.62cm 4.11lcm
D, 6.27cm 3.97cm

One shot of data is defined as
consecutive samples for 6 seconds

With few-shot fine-tuning, the mean
error of all the new data domains is
3.97cm, which is very similar to that of
the pretrained data domains

4-shot fine-tuning 1s sufficient; the
minimum error is achieved when
walking

Mean error of RFID-Pose for all the
new data domains i1s 6.27cm, while

that for Meta-Pose 1s only 3.97cm
=> a 36.68% reduction

DX
au
0]
AUBURN UNIVERSITY

‘Wireless Engineering Research and
Education Center




Generalization to Different RF Technologies

Goal: a human activity recognition (HAR) system that works with many different RF technologies

e To reduce the cost and overcome the barrier of wide deployment
* To exploit complementary various RF technologies for robust systems

n
[=]
%)
<

Challenges: With different RF platforms,
the same human activity will be captured in
very different forms of RF data: frequency
T Se—— —n——— bands, network protocols, device drivers,

Time Index Time Index Time Index
(a) Kicking sampled with FMCW Radar. (b) Kicking sampled with RFID. (c) Kicking sampled with WiFi. an d h d rd ware

=S
=]

2 e
S S
Tag Index
- 2
=) =}

Range Index
Channel Index

=

o
(=]

n
(=]

= Diversity in sampled data format

.
o

g g g = Diversity in sensitivity
10 ]
o 0 2w 0 02 0 W o o o 4« % Diversityin the translation of motion
(d) Running sanl]r;:ll?ednw?ti FMCW Radar. (e) Runninglzfn;leflxwith RFID. (f) Runninglgﬁlllﬂgg}ivith WiFi. featu re to RF d ata

Raw data sampled by different RF technologies for the same activity over a 4-

second period (FMCW Radar: range profile, RFID: phase, WiFi: Phase difference) L
2
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TARF: echnology- gnhostic

HAR Solution

WiFi Transmitter |dep=

WiFi Receiver

FMCW Radar

| RFID Tag  RFID Reader

RFID Antenna |

RF Signal Collection

il

=D
& )

Raw RF Signal

Feature Tensor Signal Preprocessing

Background Removal

-

Generalized Feature
Tensor Construction

...

Domain Adversarial Deep Neural Network
Domain

Feature bxtractor_'
i » 7 - Discriminator
5 == Motion Predictor

Activity Labels

AT &4

Human activity data sampling
using different RF platforms

Architecture of TARF

= RF Signal Collection

= Generalized RF Signal

Preprocessing
e Background removal

* Generalized feature tensor
construction

= Domain Adversarial Deep
Neural Network (DANN) for
Activity Recognition
* CNN based feature extractor
* Motion identifier

e Domain discriminator
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Activity Recognition with Domain Adversarial Neural Network

Challenge: motion feature translation

FMCW 5G WiFi
. 72 CNN based Feature Extractor Activity Predictor
< Generalized Normal Gradient Update =] —_— ] » [ ) S
3 15 PRI = TFan Full O L,
oy - Feature Tensor @ Conﬁefie J Conlrllecs:]te d Softmax F
§ 3 5%3 % Reshape © : .
g Kernel Kernel . . C e
2 37 — — e O ‘ Ic)omamA Dclscrlmlljar
4.5 33x50x5 Pooling 1 7x25x32 Pooling 9x13x48 'e) Fully Fully Softma; a - Lﬁ
2 3 1 2 3 4 ¢ Reversal Gradient Update Connected [ J) Connected [ O
Time (s) Time (s) A
Examples of one slice of the generalized
feature tensor for the kicking activity Structure of the domain adversarial deep neural network used in the TARF system.
= Time-frequency domain = Loss of the activity predictor = Weight updates:
transfqrmgtlon and 1 Yo Na o\ Ny Number of X =X, ¢ (aLO_, Te aLﬁ)
tensorization La= 7 DD Uklog (k) actviy 0X, Xy
. . b—1 k=1 classes ) aL T
= Short Time Fourier Transform ] fthe d i1 discriminat X, =X, - gﬁ Combating
. . u 0SS O e aomain discriminator o
= Feature extraction with CNN 5
. . Ny Ng L dedqr "
= Motion predictor o Lzzﬁb log (y) N Number of iF Xp = Xp - & "0Xg’
. . .. B Ny q q technologies T
= Domain discriminator g1 Learning rate
Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural networks,” J. Machine f ‘
Learning Research, vol. 17, no. 1, pp. 2096—-2030, Apr. 2016. .
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Experiment Results

* Seven activities:
e Standing still-ST, walking—WA, running-RU, squatting—SQ, body twisting—BT, kicking—KI, and hand waving—WH
e Baseline scheme: CNN (i.e., without the domain discriminator)

Accuracy: 90.86% Accuracy: 91.00% Accuracy: 60.40% Accuracy: 81.11%

05% 07% 15% 0.1% 1.4% ST EEEA 05% 0.6% 1.4% 01% 1.4% ST EEREA 1. 1.6% 45% 58% 04% 7.3% ST 0.7% 14% 12% 27% 02% 29%

0.3%

0.4% 1.9% 1.8% 4.8% 1.3% 04% | WA|1.1% 25% 1.6% 4.7% 1.2% 0.4% WA 11.2% 19.0% 5.0% 22% | WA b 6.3% 3.0% 8.8% 2.1% 09%

g RU | 0.3% 3.6% 11% 33% 1.8% 36%| RU|0.3% 25% 09% 38% 17% 4.3% § RU | 5.1% 13.2% 7.1% 18.0%| RU | 0.8% 1.8% 7.1% 3.0% 86%
O @)
= SQ|00% 02% 1.7% 22% 1.3% 20%| SQ|0.0% 02% 0.8% 14% 1.2% 1.0% s SQ|2.0% 8.7% 5.0% 10.1%| SQ| 0.0% 05% 27% 21% 2.0%
& &
5 BT |01% 11% 06% 1.6% 1.4% BT |18% 11% 06% 1.9% 1.4% c:> BT | 47% 58% 19% 10.4% 73% | BT | 48% 23% 1.6% 14.1% 2.9%

1.3%

4.3% KI| 07% 03% 05% 36% 4.2% KI|27% 1.7% 1.3% 231% 16.9% 3.4% KI|18% 07% 12% 7.0%

KI|0.7% 0.3% 05% 3.6%

4.5%

HW [ 02% 1.2% 0.2% 0.2% 0.5% HW|02% 12% 02% 02% 0.5% HW | 0.8% 6.4% 05% 15% 21% 6.3% Eimed HW | 05% 25% 05% 04% 1.0%

ST WA RU SQ BT KI HW ST WA RU SQ BT KI HW ST WA RU SQ BT KI HW ST WA RU SQ BT KI HW

Target Class Target Class Target Class Target Class

Confusion matrix of human activity recognition: FMCW Radar only Confusion matrix of human activity recognition: All four technologies

Left: CNN baseline; Right: TARF Left: CNN baseline; Right: TARF
ACCURACY COMPARISON WITH DIFFERENT TESTING SCENARIOS

Testing Environment | WiFi 5GHz | WiFi 2.4GHz | FMCW | RFID | CNN Baseline | TARF
LOS 91.86% 89.37% 91.22% 90.73% 63.41% 82.73%

NLOS 90.76% 88.71% 81.77% 74.22% 61.29% 81.24% .

Dynamic Environment 75.05% 71.44% 79.29% 89.38% 62.54% 80.18% %

URN UNIVERSITY
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Outline

e Human pose tracking: preliminaries and approaches

* RFID-Pose: 3D human pose monitoring using RFID [1], and its
extensions [2,3]

e Generative Al for data augmentation [4-9]
 Generative Al for 3D pose augmentation and completion [10,11]

e Conclusions

[1] C. Yang, X. Wang, and S. Mao, “RFID-Pose: Vision-aided 3D human pose estimation with RFID,” /EEE Transactions on Reliability, vol.70, no.3, pp.1218-1231, Sept. 2021.

[2] C. Yang, L. Wang, X. Wang, and S. Mao, “Environment adaptive RFID based 3D human pose tracking with a meta-learning approach,” IEEE Journal of Radio Frequency Identification, to appear. DOI:
10.1109/JRFID.2022.3140256.

[3] C. Yang, X. Wang, and S. Mao, “TARF: Technology-agnostic RF sensing for human activity recognition,” IEEE Journal of Biomedical and Health Informatics, vol.27, no.2, pp.636--647, Feb. 2023.

[4] Z. Wang, C. Yang, and S. Mao, “Data augmentation for RFID-based 3D human pose tracking,” in Proc. IEEE VTC-Fall 2022, London, UK, Sept. 2022.

[5] C. Yang, Z. Wang, and S. Mao, “RFPose-GAN: Data augmentation for RFID based 3D human pose tracking,” in Proc. The 12th IEEE International Conference on RFID Technology and Applications (IEEE RFID-TA
2022), Cagliari, Italy, Sept. 2022, pp.138-141.

[6] Z. Wang and S. Mao, "AIGC for RF sensing: The case of RFID-based human activity recognition," in Proc. ICNC 2024, Big Island, HI, Feb. 2024, pp.1092-1097.

[7]1Z.Wang and S. Mao, “AIGC for wireless data: The case of RFID-based human activity recognition,” in Proc. IEEE ICC 2024, Denver, CO, June 2024, pp. 1-6.

[8] Z. Wang, C. Yang, and S. Mao, “AIGC for RF-based human activity sensing,” IEEE Internet of Things Journal, vol.12, no.4, pp.3991-4005, Feb. 2025.

[9] Z. Wang and S. Mao, “AIGC for Wireless Sensing: Diffusion-empowered Human Activity Recognition,” IEEE Transactions on Cognitive Communications and Networking, vol.11, no.2, pp.657-671, Apr. 2025

[10] Z. Wang and S. Mao, “Generative Al for 3D human pose completion under RFID sensing constraints,” in Proc. ICNC 2025, Honolulu, HI, Feb. 2025, pp.485-490.

[11]Z. Wang and S. Mao, “Generative Al-empowered RFID sensing for 3D human pose augmentation and completion,” IEEE Open Journal of the Communications Society, vol.6, pp.2958-2975, Feb. 2025.




Data Collection in Learning-based RF Sensing

Tra|n|ng data CO”eCthn |S FCWRdddrPlalfoml RFIDPliiltfonll
challenging: \ { '

= RF sensing data collection is time-
consuming

=  Hours of data

=  Camera and RF data should be
synchronized

= Diversity of training subjects

= Diversity in the RF signal
representations from different RF
devices

AUBURN UNIVERSITY
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Solution: Data Augmentation

* Data Augmentation: techniques used to Augmentation of RF data:
increase the amount of data by adding slightly _
. . . * To greatly reduce the data collection efforts
modified copies of the existing data or newly

created synthetic data from existing data * RF data: random and hard to manipulate

* Images: resize, crop, rotate, flip, etc. * Amore challenging problem

o : Observation: Pose, on the other hand, can be

AN ! more easily manipulated in term of movement
variations, body forms, camera angles, and
locations

brightness

Question: how to map the 3D human pose data to
RF features?

By enhancing the diversity of pose data, we can, in
turn, augment RF data by transforming the
augmented pose data into high quality RF data

Image source: https://www.v7labs.com/blog/data-augmentation-guide ,f
https://en.wikipedia.org/wiki/Data; https:/Mwww.simplilearn.com/dat i
AUBURN UNIVERSITY

‘Wireless Engineering Research and
Education Center




37

[ User prompt]

Pretrained
model

Output:
text, image, video,
ppt, code, ...

J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic Models,” arXiv:2006.11239, June 2020. [Online] Available: https://arxiv.org/abs/2006.11239

GAN{=ZEY

DDPM{ZE!

AIGC: GAN vs. Diffusion

Discriminator

D(x)

Xo—{ X1 —{ X2 -

Image source: https://zhuanlan.zhihu.com/p/590840909

Generator

G(z)
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Proposed Solution: Data Augmentation with R-GAN

Real Data Collection Offline Training Augmented Dataset
ey e || 17 Ve Patfor Ground Truth RF Daa Real
| ® Q | I Specified :
| © — ' RF Platform +
! ! : D) () s /
L\ ) E ______________________________________ Synthetic
Real RF Data
Pose Simulation | | & & )
| Skeleton i Activity ! | Gene]r)z;ttl:e Synthetic
pnthaliZEnon e seHponT: | Discriminator RF Data Downstream RF
! Generator .
p * A ‘ - : Model Update Sensing Tasks
4 N\ d RN 4 N : k letal N
. . L. Human Ske
l = Posture Estimation )
e S ] ey, 1 P ~
. )L )L Simulated Pose Human Activity
Recognition |
DX

1
w

0]
AUBURN UNIVERSITY

3 8 Wireless Engineering Research and
Education Center




39

Recurrent Generative Adversarial Network (R-GAN)

Generator

RFID Data RFID Data RFID Data

8x1x33

RNN RNN RNN
ecoder, ecoder Decode !

Conditioning
Target
—_
Skeleton Encoder Enco der M

1

@@

3D Pose 3D Pose 3D Pose
Data Data Data

Time Sequence

An RNN Autoencoder serves as the Generator
of the GAN, and a 1D CNN serves as the Discriminator

Discriminator
- Conv_hl Conv_h2 Conv_h3 Conv_h4 Conv_h5
1 8x15x64  8x8x161  8x4x289 8x2x545  8x1x1
Generative
RFID Data

logits
-
=
I Flatten
| And
| Cross-Entropy
| Sigmoid
|
I Fake Score te
Real Ll _ _ _ | Realism .
RFID Training Score
Data Update Real Score |«

I I
The final layer of the discriminator is a 1D CNN layer with

1 kernel for dimensionality reduction, to be flattened to a logits
vector for computing a realistic score

DX
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Simulated Human Pose Data

* Training data collection: performing activities in front of both Kinect camera and RF platforms

* Pose data generated using a simulation tool Blender [1]

* Two ways to enhance diversity: (i) TGNP: introduce independent Gaussian noise to the joints (0-mean, small variance);
(i1) PoseMod: introduce variations in poses movements, skeletons, and camera viewpoints and locations [2]

Ground Truth Simulated Pose Gaussian Noise Perturbed Pose
12 1.2
1 1
0.8 0.8
N N =
0.6 0.6 s . .
(a) original (b) resized limbs
0.4 0.4
0.2 0.2
0 0
0.5 0.5
0.5 0.5
0 0
0 0
-0.5 -0.5
y -0.5 " y -0.5 "

(c) Extended movement variations (d) Different locations and viewp§ints
[1] Blender - a 3D modelling and rendering package: http://www.blender.org AUBURN '('vamsmy

[2] K. Gong, J. Zhang, and J. Feng, “PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation,” in Proc. IEEE/CVF CVPR'21, Virtual Conference, Sept. 2021 Wireloss Enginoering Rescarch and

4 O Education Center



http://www.blender.org/

Implementation and Evaluation

WiFi Transmitter

WiFi Receiver

FMCW Radar

RFID Tag  RFID Reader RFID Antenna

RFID: an off-the-shelf Impinj R420 reader, passive ALN-9634
(HIGG-3) tags, and three S9028PCR polarized antennas

mmWave Radar: IWR 1843 BOOST single-chip FMCW sensor
WiFi: 5300 network interface card (NIC): 2.4 GHz or 5 GHz

Training with a GTX 1660 Ti Graphics card .
X

a1l
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Example of Synthesized RF Data

2.4 GHz WiFi (CSI): 5 GHz WiFi (CSI): RFID (Phase): mmWave (Range
Drinking Twisting Waving arms Profile): Walking

Kinect

Ground truth

Synthesized




Quality of Synthesized RF Data

Table 1
Structural Similarity Index (SSIM) SSIM SCORES ACHIEVED BY RF-AIGC FOR THE FOUR RF PLATFORMS

(2pzpar + C1) (2020 + Cs)
(n2 + p3, + C1)(02 + 03, + Ca)

SSIM (x,2") £

RF Platforms | SSIM Score | | SSIM Structure Score |

: RFID 0.8995 0.9310
luminance, contrast, and structure 5G WiFi 0.8363 0.8675
FMCW Radar 0.8282 0.8563
Frechet Inception Distance (FID) 2.4G WiFi 0.7473 0.7718
2
FID = ||p — /|| + Te(Z+ X' = 2VE x ¥) Table II
COMPARISON OF FID, DIVERSITY, AND MUTLIMODALITY SCORES FOR
Ch GENERATED AND REAL RF DATA
Diversity =
o= S B Zl ”'ﬁ f ”2 | FID | Diversity | Multimodality |
PoseMod Synth. | 58.128+0-103  1( g43+0-266 9.008+0-317
Z Smul TGNP Synth. 50.500%£0-091 g 594+0.287 8.058+0-414
Multimodality = Z Z - Sufficient Real | 6.216%0.025 9 399+0.230 8.392+0.391
” s B ‘”2 Limited Real 4.548+0-008 g 584+0.243 7.353+0-409

=] =1
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Downstream Task |: 3D Pose Tracking

Target Skeleton

44

The Recurrent Autoencoder based Deep Kinematic Neural Network Model

Kinect Data

FK Layer FK Layer FK Layer
TS— 15 @ s @
Recurrent Recurrent Recurrent
Decoder Decoder Decoder
s— T TS TS
Recurrent Recurrent - _.I Recurrent
Encoder Encoder Encoder
T T
RFID Data RFID Data v RFID Data

Time Sequence

-

Human Skeleton

Recurrent Autoencoder (256 gated
recurrent units (GRU) ):
RF data =» unit quaternion

Forward kinematic layer:
Rotation matrix =» 3D pose

Kinect data: labels, for training and
performance evaluation

DX
au
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Downstream Task: Pose Estimation (RFID)

Dataset

Limited-
Real

Sufficient-
Real

Synth

Sufficient-
Synth

Dataset

N

5

17.6 min Limited real data 8.06 cm
105.6 min Sufficient real data 3.54 cm
316.8 min 3 batches of synthesized 794 em

data
429 4 min 4 batches of synthesized 703 em
data
Sufficient Augmented
440 min Dataset (limited real data + 2.97 cm

sufficient synthesized data)

3 datasets per activity of 3 subjects (26.4 min) for each
platform (RFID, 2.4GHz/5GHz WiFi, mmWave radar)

Limited real dataset
0.2 Sufficient real dataset

Synthesized Dataset
Sufficient synthesized dataset
Augmented dataset

0.1

U 1 1 1 1 1 1 1 1 1

0 005 01 015 02 025 03 035 04 045 05

Pose estimation error (m)

CDF curves for estimation errors of 5 models trained
with the 5 different datasets, respectively
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Pose Estimation Error — Four Technologies

 RFID achieves the best

performance with augmented
data

* 5G WiFi has an adequate
performance, while 2.4G WiFi1
and FMCW platforms has the
poorest performance among the
four platforms

* Nevertheless, data augmentation
boosts the pose estimation
performance to a level that is on
par or better than the case with
sufficient real data

CDF

| Limited real dataset
0.2 Sufficient real dataset
Synthesized Dataset
01 Sufficient synthesized dataset
: Augmented dataset
0 s s L L L L L s s
0 0.05 0.1 015 02 025 03 035 04 045

Pose estimation error (m)

(a) CDF of all estimated joints Pose

0.5

03 — Limited real dataset
02k Sufficient real dataset
’ Synthesized data
0.1 K Sufficient synthesized dataset
| Augmented dataset
0 L

0 0.1 02 03 04 05 06 07 08 09
Pose estimation error (m)

(c) CDF of all estimated joints ose

CDF

0.9
0.8
0.7
0.6
0.5
04F
0.3
— Limited real dataset
02 H Sufficient real dataset
i Synthesized data
0.1 Sufficient synthesized dataset
Augmented dataset
ol L L L 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Pose estimation error (m)
(b) CDF of all estimated joints bose
1 e
09 Y
08
07F
06F
05F
04ar /]
i
03F i
J Limited real dataset
02k /) Sufficient real dataset
I Synthesized dataset
0.1 H / Sufficient synthesized dataset
/) Augmented dataset
ol

0

0.1

0.2

0.3 0.4 0.5 0.6 0.7 0.8
Pose estimation error (m)

i
(d) CDF of all estimated joints b@g%&q R IVERSITY
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Downstream Task: Human Activity Recognition

2D CNN Feature Extractor Bidirectional LSTM Classifier
2D Conv + 2D Conv + 2D Conv + 2D Conv + Bidirectional LSTM = Dense +
RELU + RELU + RELU + RELU + 2 parallel LSTM with Softmax
Same padding Same padding Same padding Valid padding opposite input

+ + direction

2D MaxPooling Dimension :
4 Reduction i :
(70} : :
£ ! E —drinking
36 5 ! I
L ! I
I : :
7 ! i walking
l !
! I
l ‘

Extracted
features

.\
)
./Il

0]
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Improvements through Augmentation (RFID)

* Positive correlation between the amount of 1 | | | | | | | |
synthesized data and model performance
: : 097 =TT b —— b — |
* Gaussian noise approach: P e ek iR SRRl S
0.8 T e 1
* F1 score of 87% ot ®
U“I_.Ir = &_4,"‘" / }"" o
. [ g
* Lower than the sufficient real model ars b
L 0.6 J¥ e |
* Pose perturbation approach: 'mé .5l , {f‘i;‘_; s _
o /7, w"'j
* FI score of 92.09% ~ ol _..-,-r:{'i,’“/'” _
, _ ) &7 —=—-Limited Real (14.4 mins)
* Outperform the case with sufficient 0al | i ~-+—-Sufficient Real (86.4 mins) |
real data ‘ _5;-“;.‘*' Limited Real + Baseline Syn. (86.4 mins)
02|/ — +—-Limited Real + Baseline Syn. (172.8 mins)| |
e (Costs around almost 4 times the P — #— Limited Real + Baseline Syn. (259.2 mins)
amount of real data 0.1 HA ~— Limited Real + Syn. (259.2 mins) i
—%— Limited Real + Syn. (345.6 mins)

° . . . 0 & | 1 1 1 1 1
Diversity and amount both improved by 0 50 100 150 200 250 300 350 400 450
data augmentation

Epochs ,
DX
l|/I'|
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Class Conditional Diffusion for Generating RF Data

(i) Forward Diffusion

Generated RFID : :
RF RF Gaussian noise
qXe" | XeZy

sensing signal X§F

—— ~———
R

-

_ t=t®A

()Eﬁ) g ~ (ii) Reverse Diffusion
- ) RF RF
po(XtZy | X7, 4)

\_/
I ConvBlock

——

——
- S

U-Net
i 1
I ResidualBlock ‘I I¢ _______ Goncaleusiion, ¢ Downsample
‘ Self Attention \ Coneatenai \ Upsample
oncatenation
D 2D Conv(1 channel) ‘ Il --------------- ‘ l t Time step
\

A Activity class

D Embedding

pnidmn

Class conditioning enabled through: Activity Class A is first embedded through MLP |
layers, then incorporated into U-Net through simple concatenation with time step t 28

AUBURN UNIVERSITY
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Stable Diffusion-based Approach

e Diffusion on the latent
representations of raw RF data

* The procedure of conditional RF
data generation with
RFIDACCLDM

o The reverse process p
progressively transforms random
Gaussian noises into plausible
time series data, conditioned on
embedded class labels

o The structure of the denoiser,
the U-Net model, is also
illustrated

54

RF VAE RF VAE

L [BL |SL LlL L

S S S S S S

Tl T proe | —Ur Tl

] i

Real RFID data for /,_/ b4 ——_ Generated RFID data
activity of dr;nkiug -"-‘_[-{_I;ID ; e B for activity of drinking
xL g p64x36 atent representanon - 7L 64x36
e for activity of drinking ' €8
Zli,?F €R 1x256
Latent Space
Reshaped RFID (ZRF | ZEF, Isotropic Gaussian
Latent Data = _3 et i Distribution
ZRF‘ ER16x16 —— \\\\ S Z?FER16X16
ZSF — . g— Z;F
- e | 2 )
B convBlock T Attention U-Net |
5 | 3 I Downsample

. ResidualBlock ‘.. ~ Coucatenauou rrrrrrr y P

Predicted noise €5 : : Added noise € \ Upsample
4 Self Attention | ‘l.’ Concatenation ‘ll \

Is 1 X
D 2D Conv(1 channel) }A D A : t Time step
[ | s

D Embedding Li=t@A__ _!_l_l_‘_!_. ______ | A Activity class
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Diffusion Examples

Reverse Diffusion (Generation) Reverse Diffusion (Generation): RFID data

10
15
20
25
30

35

0 10 20 30 40 20

The starting point (appearing as random Gaussian noise) is the final step of the forward diffusion process which progressively adds

Gaussian noise to eventually result in an Isotropic Gaussian distribution 2
55 AUBURN l:JNIVERSITY
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Fidelity of Diffusion Generated RF Data

(a) Real data (b) Latent Diffusion synthesized data (c) Diffusion synthesized data

30 — 30— 20

15 4
20
10 4
5 <

0+

RFID phase variation values

Walking o
-10
=10 —| 15 4
-20
220
25
30— '38 -
30
w 20 o P
10 - 10 15
0 o
36
33
30
27
24
wn
21
Boxi :
18
oxing g "
L
&3 12
~ 9
6
3
28
0 1 2 3 0 1 2 3 ;,.J
. 0]
Time frames AUBURN UNIVERSITY
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Fidelity of Diffusion Generated RF Data (cont’d)

COMPARISON OF DIVERSITY SCORES

Model Diversity score * RFID-ACCDM (Activity Class
RFPose-GAN [23] 9 480.25 Conditional Diffusion Model)
RFID-ACCDM 11.10*0-21  RF-ACCLDM (Activity Class
RF-ACCLDM 9.16%0-31 Conditional Latent Diffusion
Real 9.33+0.25 Model)

OUR LATENT DIFFUSION GENERATED SAMPLE QUALITY COMPARISON IN
FID WITH PLAIN DIFFUSION MODEL, AUTOENCODER-BASED
RFPOSE-GAN MODELS, AND REAL DATA FOR SELECTED HUMAN
ACTIVITIES AND ALL ACTIVITIES.

57

Model Standing | Waving | Walking | Boxing | Overall
RFPose-GAN 36.18 33.01 44.97 69.56 48.89
REID-ACCDM 8.79 8.25 20.68 40.54 25.64
RF-ACCLDM 4.56 7.01 3.64 4.84 10.45
Real 5.17 7.36 4.78 4.49 6.22
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Downstream Task: Human Activity Recognition

Accuracy: 83.47%. F1 Score:83.45% Accuracy: 84.54%, F1 Score:84.28% : Accuracy: 91.80%, F1 Score:91.56%

drinking 00%  34%  196%  0.0% 0.0% 9 drinking 52%  33%  0.0% 14%  0.0% M drinking 0.0% L1%  14%  00%  0.0% %0
80 80 80
squatting 96.8¢ 10.4% 0 squatting 0.0% 0.0% 2.8% 0 squatting. 0.0% 0.0% 0.0% 1.4% =
% ‘ 60 . 60 ., 60
% boxing | 33.8% 0.0% £ boxing| 0.0% 19.4% 0.0% £ boxing| 0.0% 0.0% 11.1% 0.0%
= o 2 50 © 20
= = =
= & e
2 still | 4.2% 0.0% fa0 3 sill| 258%  0.0% 2.8% W0 3 still| 210%  00% 0.0% 00% | 140
'l
< 30 30 30
twisting | 0.0% 0.0% twisting | 0.0% 0.0% 4.4% twisting | 1.6% 0.0% 3.3% 0.0%
120 120 20
‘ \
walking| 00%  00%  0.0%  0.0% 10 walking| 8.1%  69%  77%  28%  42% 110 waking| 81%  17%  00%  00%  00% L
‘ —0 — o § : : - - =0
drinking  squatting  boxing still wisting  walking drinking squatting  boxing still twisting  walking drinking squatting  boxing . still twisting  walking
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Figure 3. The confusion matrices obtained with CNN models trained on 32 minutes of real data (left), 16 minutes of RFID-ACCLDM generated data (middle),
and 64 minutes of RFID-ACCLDM generated data (right).
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Downstream Task: Human Activity Recognition (cont’d)
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Downstream Task:

Human Pose Estimation

How to generate labeled data for

supervised training:

* RF-ACCLDM: we first use a pre-trained RFID-
Pose model to estimate synthetic poses from
ACCLDM generated data, and then employ

pairs of generated RFID data and estimated
pose for the supervised training

* RFPose-GAN: we pair GAN synthesized RFID
data with its input pose, i.e., the simulated
pose data

The mean per joint position error (MPJPE):

N
MPJPE = zlv P
n=1

Z.Wang and S. Mao, “AlGC for RF sensing: The case of RFID-based human activity recognition,” in Proc. ICNC 2024, Big Island, HI, Feb. 2024, pp. 1-6.
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Outline
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[1] C. Yang, X. Wang, and S. Mao, “RFID-Pose: Vision-aided 3D human pose estimation with RFID,” IEEE Transactions on Reli and Completlon
[2] C. Yang, L. Wang, X. Wang, and S. Mao, “Environment adaptive RFID based 3D human pose tracking with a meta-learning

10.1109/JRFID.2022.3140256. Generative Al-Based Dependency-Aware
[3] C. Yang, X. Wang, and S. Mao, “TARF: Technology-agnostic RF sensing for human activity recognition,” IEEE Journal of Bi{ TaSk Offloadlng and Resource Allocation
[4]Z.Wang, C.Yang, and S. Mao, “Data augmentation for RFID-based 3D human pose tracking,” in Proc. IEEE VTC-Fall 2022 .
[5] C. Yang, Z. Wang, and S. Mao, “RFPose-GAN: Data augmentation for RFID based 3D human pose tracking,” in Proc. The 1 fOI' UAV'ASSlStEd IOV

2022), Cagliari, Italy, Sept. 2022, pp.138-141. A
[6] Z. Wang and S. Mao, "AIGC for RF sensing: The case of RFID-based human activity recognition," in Proc. ICNC 2024, Big |3 A Comprehenswe Survey on GenAl-Enabled 66:
[7]1Z.Wang and S. Mao, “AlGC for wireless data: The case of RFII'D—'based human activity recogniti9n," in Proc. IEEE ICC 2024 TEChﬂOlOgies, Cha"enges, and
[8]Z. Wang, C.Yang, and S. Mao, “AIGC for RF-based human activity sensing,” IEEE Internet of Things Journal, vol.12, no.4, {
[9]1Z. Wang and S. Mao, “AlGC for Wireless Sensing: Diffusion-empowered Human Activity Recognition,” IEEE Transactions FUture ResearCh Avenues
[10] Z. Wang and S. Mao, “Generative Al for 3D human pose completion under RFID sensing constraints,” in Proc. ICNC 202
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Critical Challenges for Deployment in Reality

Challenges: (i) lacking sufficient training data/high cost on collecting training data; (ii)
low sampling rate of RFID; (iii) partial pose detected/occlusion

Estimated Pose ‘Ground Truth

Head

3 SplneShoulder
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21 ElbowRight
g \1N5 .Elttl)_OW ft2 3p(heMid 22 Wrist |gg\t_
17 HandLg?t 25 ThumbRight

4 HandTipRight

ineBase
. 6 Hiplleft {10 HipRight
7 Shoulder 10 ShoulderRig
8 ElbowLeft 11 ElbowRigh 7 KneelLeft {1 KneeRight

9 WristLgft; spingBase |12 WristRight

3 HipLgft HipRight 8 Ank|§Left tz AnkleRight
4 Kneele KneeRight 9 Footl%ft 13 FootRight
RFID-captured partial pose observation (12 joints) Kinect-captured full pose (25 joints) 2 X
i
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Necessity of Full-Body Pose Estimations

Self-driving companies such as Waymo are stressing ¢ A full-body pose with detected joints in the head
the importance of full-body pose estimation under region is essential to VR/AR related 3D human pose
sensing constraints for pedestrian behavior analysis applications

Real-world Pose results Digital avatar

human action of MetaFi++ in metaverse

)
B
1

it

Ji, Y. Zhou, D. Anguelov, and C. Sminchisescu, "HUM3DIL: Semi-supervised multi-modal 3Dhumanpose estimation for autonomous driving,” in Proc. 6th Annual Conf. Robot Learning, Auckland, NZ, Dec. 2022. AUBURN UNIVERSITY
L
’

Zanfir, M. Zanfir, A. Gorban
. Xie, and J. Yang, "MetaFi++: WiFi-Enabled Transformer-Based Human Pose Estimation for Metaverse Avatar Simulation," in IEEE Internet of Things Journal, vol. 10, no. 16, pp. 14128-14136, Aug. 2023. Wireless Engineering Research and
Education Center
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Problem Statement

e Pose augmentation:

e Generating high-fidelity and temporally smooth
synthetic RFID data

zrrID ~ p(zRrFID | @)

e Estimating corresponding 3D human pose from this
synthetic data using a kinematics predictor.

pp = fkin(wRFID(ZRFID))

* Pose completion:

e Structural: generates a complete 3D pose from partial
observations, leveraging the latent representation of
partial poses and activity labels

zp ~ p(2g | 2p, @), Pr = Ypose(zy).

e Temporal: increase frame rate to obtain smooth
transitions and coherent motion sequences

Generated RFID Representation

L

Estimated Partial Pose

I

Generated Full Pose %
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System Design

Transformer-based Latent Diffusion Model Transformer-based Kinematics Neural Network
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Pose Estimation: Train-on-Real, Test-on-Real

0.3 . : ‘
' —— Joint 8 (Left Elbow)
) . . .. —— Joint 9 (Left Wrist
Subject Estimation Error Estimation Error Estimation Error 0251 I — Jomt12 (;i;htI:;r)ist)
[
Index RFID-Pose (cm) Cycle-Pose (cm)  Proposed (cm) 2 02} |‘| '||
g | )
Subject 1 3.75 4.12 3.34 LDT = &0 n 1
o
Subject 2 4.55 4.43 3.47 & | \
Subject 3 3.58 3.79 3.05
Subject 4 5.32 451 491
Subject 5 8.17 4.97 5.65
! Note: Subjects 1-3 are trained; Subjects 4-5 are untrained. T Jont § (Left Elbow)
06 /O Joint 9 (Left Wrist)
. / \ [ Joint 12 (Right Wrist)
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[1] Chao Yang, Xuyu Wang, and Shiwen Mao, “RFID-Pose: Vision-aided 3D RNN % 04} ‘ ”
human pose estimation with RFID,” IEEE Transactions on Reliability, vol.70, B l §03
no.3, pp.1218-1231, Sept. 2021. aseline  g»
[2] Chao Yang, Xuyu Wang, and Shiwen Mao, “RFID based 3D human pose 027
tracking: A subject generalization approach,” Elsevier/KeAi Digital ol
Communications and Networks, vol.8, no.3, pp.278-288, Aug. 2022.
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Pose Detection: Train-on-Synthetic, Test-on-Real

Table 3. Evaluation Metrics for Estimated 3D Human Poses Using LDT | ' "7 | L e=="="°2
Generated RFID Data

Metrics LDT Metrics LDT
Average joint error (cm) 8.99 FID 1.42 |
Bone consistency (cm) 2.25 GT FID 0.73
Joint angle error (°) 691 Diversity 10.98 ]
Smoothness (cm/frame) 1.51 GT Diversity 10.35
GT Smoothness (cm/frame) 1.40 ]

CDF

Table 4. Evaluation Metrics for Estimated 3D Human Poses Using LDT
Generated WiFi CSI Data

Metrics LbT Metrics LDT Latent Diffusion (Transformer) |
Average joint error (cm) 9.33 FID 4.46 == -~ Real ‘ .

Bone consistency (cm) 2.33 GT FID 0.85 Lffltent‘lefusmn (U-Net) |
Joint angle error (°) 7.52 Diversity 11.53 — Diffusion (U-Net)

Smoothness (cm/frame) 1.03 GT Diversity 11.75 | | | | |

GT Smoothness (cm/frame) 1.38 . 0 10 20 30 40 50 60 70 80

Pose estimation error (cm)
.
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Structural Completion

_ _ _ Ground Truth
* Atwo-stage motion-aligned generation process

* Initial generation with attention capture
* Motion-aligned refinement
* Generates anatomically consistent and

temporally aligned full-body 3D poses

Table 5. Evaluation Metrics for 3D Pose Completion with Ground Truth and

Unseen Partial Pose Conditioning
Twisting - sample 023

Metrics Ground Truth Unseen
Unseen
Avg joint error (cm) 11.74 19.23
Bone consistency (cm) 1.77 2.12
Joint angle error (%) 6.65 11.13
Smoothness (cm/frame) 2.46 1.90
FID (-) 0.87 4.67
Diversity (-) 26.59 13.71
Trajectory joint error (cm)
compared with partial pose 7.24 8.11
Trajectory velocity error (cm/frame) Raising arms - sample 021
compared with partial pose 7.56 7.80

Ground Truth Generated Partial 20

]
1]
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Comparison with Baselines

Diffusion-based Reconstruction Animation - Animation

Ground Truth Generated Partial

Autoencoder Reconstruction Animation (Batch 0) KNN Reconstruction Animation (Batch 0)

Ground Truth Generated Partial Ground Truth Generated Partial
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3D Human Pose Frame Interpolation

A 2D U-Net-based frame interpolation method to up-sample the estimated poses by up to 30 Hz

* |t takes several frames before and after the target interval as input to predict the intermediate pose frames

* Achieves smaller temporal smoothness errors than traditional methods such as linear and cubic
interpolation

No.2 Original Pose NO.2 2x Interpolated Pose

—&— Original —&— Interpolated

1 2 3 4 5 6 7 8 9 Frame

| PLELR ]
wiiEnnEin

@ our nterpolation ([ Original

X “ 04 =
06 0.6
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Conclusions

82

RF sensing for 3D human pose tracking

Real-time 3D human pose tracking and classification with commodity
RFID devices, and its enhancements

Data augmentation for RF sensing: GAN, Diffusion, and Stable Diffusion
based approaches

Pose augmentation and completion: Latent Diffusion Transformer
based approach, structural and temporal completion
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